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Abstract: Model reduction techniques can be used to reduce the computational burden associated

with nonlinear model predictive control (NMPC). In our recent work, we introduced the transient

nonlinear wave propagation model (TWPM) for reduced dynamic modeling of multi-component

distillation columns with variable holdup, and demonstrated its suitability for optimization and

control of single-section distillation columns and simple air separation units [Caspari et al., J. Pro-

cess Contr., 2020]. We show here that the TWPM is well-suited for reduced modeling of multi-

sectional ultra-high-purity distillation columns and enables real-time capable NMPC of complex

process flowsheets with tight operational constraints. To demonstrate its performance and accu-

racy, we apply the TWPM for NMPC of an ultra-high-purity nitrogen air separation unit. We

perform an in-silico closed-loop case study comprising a series of load changes. Our approach

reduces CPU time by 84 %, enabling NMPC in real time.
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1 Introduction

The computational cost of dynamic optimization strongly depends on the complexity of the em-

bedded mathematical model. It is of particular relevance in online applications such as nonlinear

model predictive control (NMPC) [1]. Model reduction strategies aim at lowering this computa-

tional burden while retaining high model accuracy [1]. Distillation columns are one of the key unit

operations in chemical processes. In general, mechanistic stage-by-stage modeling of these units

leads to high-dimensional nonlinear systems of equations that are computationally demanding to

solve [2]. Therefore, reduced models are interesting for NMPC of flowsheets including distillation

columns with many stages, cf. [3]. While linear MPC is the more established control method

for operating chemical processes, such as air separation units (ASUs), NMPC facilitates process

operation on a wider range of production rates [4]. Capturing the nonlinear plant behavior is of

particular importance when considering economic flexible operation of the plant with significant

load changes as, e.g., required for demand-side management [5, 6]. Hence, we aim at deriving a

real-time capable NMPC using a nonlinear reduced dynamic controller model.

Among the model reduction techniques for distillation columns, collocation methods [7, 8], com-

partment modeling [9, 10] and nonlinear wave propagation models (WPM) [11, 12, 13] are the

most prevalent strategies adopted in the literature. WPMs have several strengths over the other

reduction approaches. First, the number of differential and algebraic variables is small and inde-

pendent of the number of column stages, making WPM particularly suited for large distillation

columns. Second, as opposed to collocation and compartment methods, the number of model

parameters is small and all parameter values can be determined from steady-state data only. In

addition, modeling decisions such as the selection of suitable collocation points are not present,

leading to comparably small modeling effort. However, due to strong assumptions under which the

partial-differential component balances can be solved analytically, WPMs show good predictions

only for near-ideal mixtures and columns. Another limitation of classic WPMs is their restriction

to constant holdups. To overcome the latter limitation, we recently extended the multi-component

WPM of Kienle [14] by adding a global hydraulic correlation [15]. This idea can be regarded as

a combination of nonlinear wave theory and compartment modeling and enables the use of the

WPM in transient process operation. Thus, we term our approach transient wave propagation

model (TWPM).
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The mentioned reduction techniques have been applied to a number of works on dynamic optimiza-

tion and control of high-purity distillation columns. Most studies investigated the WPM for control

of single columns with binary or pseudo-binary systems [16, 17, 18, 19, 20, 3, 21, 22, 23, 24]. In ad-

dition, reduced dynamic modeling of multi-component distillation columns or distillation columns

with multiple sections has been the subject of a number of contributions. Han et al. [25] used the

WPM to implement a controller for the semi-continuous transition phase of a start-up procedure

for a multi-sectional two-column configuration and a pseudo-binary mixture. Cao et al. [26] em-

ployed the collocation method for reduced modeling and offline economic dynamic optimization

of the multi-sectional distillation columns in an ASU. Bian et al. [2] developed a compartment

model for the multi-section column of an ASU. The model was later combined with DAE struc-

ture exploitation strategies in an NMPC case study by Chen et al. [4]. Kumar and Daoutidis [27]

performed singular perturbation analysis to derive a low-order nonlinear model for a ternary dis-

tillation column with two sections and large internal flows. Grüner et al. [28] and Schwarzkopf [29]

employed the multi-component WPM of Kienle [14] for wave position control in a ternary multi-

section distillation column by means of NMPC. By contrast, few works have considered the control

of entire process flowsheets using reduced distillation column models. In our previous works, we

used a hybrid mechanistic data-driven compartment model and the TWPM for NMPC of complete

ASU processes including a single-section distillation column [30, 15].

While reduced dynamic modeling and control of multi-section distillation columns and the appli-

cation to simple flowsheet topologies have been presented in the literature, the combination of

both tasks, i.e., reduction-based NMPC of complex processes featuring multi-sectional distillation

columns, is missing. However, process control of complex flowsheets is important for industrial

applicability of the model reduction approaches. In this work, we investigate the application of

the TWPM for NMPC of an ultra-high-purity cryogenic ASU comprising a bi-sectional ternary

column with side streams and multiple heat exchangers. We select this process to demonstrate

the suitability of the TWPM for reduced modeling of ultra-high-purity multi-section distillation

columns. Further, we show that the TWPM enables real-time capable NMPC of an entire com-

plex process flowsheet with tight operational constraints. To this end, we develop a reduced ASU

model and demonstrate its application in a closed-loop NMPC case study considering a series of

load changes. We use an NMPC embedding a mechanistic process model as benchmark to assess

the performance and computational benefit from reduced modeling.
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The remainder of the article is structured as follows: Section 2 presents the ASU investigated

in the case study and a mechanistic process model. In Section 3, we develop a reduced process

model. Section 4 introduces the NMPC case study and presents a discussion of the results. The

manuscript closes with conclusions and outlook in Section 5.

2 Ultra-high-purity Air Separation Unit

Ultra-pure nitrogen (N2) is an industrial gas characterized by the requirement for an extremely

small impurity content in the ppb (parts per billion) range [31]. In this study, we consider an

energy-integrated ultra-high-purity ASU similar to the one introduced in the patent specification

[32]. We discuss the key features of the process below. Further, we present a corresponding

mechanistic dynamic process model.

2.1 Process Description

The topology of the cryogenic ASU investigated is illustrated in Fig. 1. The process produces

pressurized ultra-pure gaseous nitrogen (PGAN). Compressed and pre-purified air at 10 bar and

ambient temperature enters the process (1) and is successively cooled in two consecutive heat

exchangers (HX1, HX2) to superheated vapor close to the saturation point (2). The chilled air

stream is fed into a bi-sectional distillation column in which the least volatile component, nitrogen,

accumulates at the top. We specify process parameters and unit sizing to produce nitrogen with

max. 10 ppb impurity content. The rectifying section of the distillation column has 79 stages, while

the stripping section has 20 stages. Liquid reflux at the column top is provided by condensing a part

of the exiting vapor stream in a heat integrated condenser (HX3). A fraction of the liquid outlet of

the column feed stage is withdrawn (3), subcooled (HX4), expanded in a throttle valve to 5.1 bar,

fully evaporated (HX3), boosted in a compressor (COMP), cooled (HX2) and reintroduced at the

column bottom (4) to increase the nitrogen yield. The boosted stream (4) leaves heat exchanger

HX2 in two-phase state containing a minor fraction of liquid. The two less volatile components

argon and oxygen accumulate at the column bottom and are discharged as waste stream (9).

Both product and waste streams are used as cooling agents in the heat-integrated process. The

waste stream (9) is subcooled in HX4, expanded to 4.1 bar, fully evaporated in HX3 and heat
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Fig. 1: Process flowsheet based on patent specification [32]. Manipulated variables highlighted by
gray circles.

integrated in HX4, HX2 and HX1. Further, the waste stream is expanded in a turbine (TURB)

to 1.2 bar in order to provide power for compression of the withdrawn stream (COMP). Turbine

and compressor are mechanically coupled and excess power generated in the turbine is dissipated

in an energy dissipative break. A part of the liquid reflux stream exiting the condenser (7) can be

discharged as liquid nitrogen product 9nLIN. Using the proposed design specifications, the nitrogen

yield in nominal steady-state operation is 81.9 %. The nitrogen yield relates the amount of nitrogen

in the feed air stream 9nAir
N2

and the product stream 9nPGAN. The manipulated variables (MVs) of

the process are (i) the feed air stream 9nAir, (ii) flow split factor of the discharged liquid nitrogen

stream ξLIN, and (iii) flow split factor ξside as indicated in Fig. 1. The MV ξside specifies the

fraction of liquid exiting the feed stage that is withdrawn as side stream (3).

2.2 Mechanistic Process Model

We develop a mechanistic full-order process model (FOM) as plant surrogate and use it to bench-

mark the computational cost and control performance of an NMPC. The FOM comprises detailed

mechanistic models of all process components that are similar to the models presented in [5]. Air

is modeled as ternary mixture of the low-boiling component nitrogen (N2), medium-boiling com-

ponent argon (Ar), and high-boiling component oxygen (O2). The cryogenic distillation column is
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represented through stage-by-stage mechanistic modeling, including MESH equations for each col-

umn tray. Due to the fast dynamics of compressor, turbine and total condenser (HX3), we employ

quasi-stationary models for these units. The remaining heat exchangers (HX1, HX2, HX4) are

modeled by means of 1D distributed dynamic models. Details are provided in the supplementary

information.

3 Model Reduction using TWPM

Based on the FOM, a reduced process model employing the TWPM is developed in this section.

First, we provide a brief description of the underlying theory. A detailed presentation of the

TWPM is given in our previous work [15]. We then present a reduced model for the multi-sectional

distillation column. Finally, we perform parameter estimation to determine the TWPM parameter

values. We use the reduced process model as controller model for NMPC in Section 4.

3.1 Transient Nonlinear Wave Propagation Model

The concentration profile xi of a chemical species i P t1, ..., Ncu in the liquid phase of a distillation

column is computed by means of a superposition of Nc ´ 1 concentration waves k:

xipz, s
p1q, ..., spNc´1qq “ x

p1q
i `

Nc´1
ÿ

k“1

x
pk`1q
i ´ x

pkq
i

1` expp´ρpkqpz ´ spkqqq
, @i “ 1, ..., Nc ´ 1, (1)

where z is the spatial coordiante along the longitudinal axis of the distillation column, ρpkq is the

wave slope, and spkq is the coordinate of the moving front of wave k. The variables x
pkq
i and x

pk`1q
i

represent the asymptotic values of the wave k for z Ñ ´8 and z Ñ 8, respectively. The vapor

composition is calculated in a similar manner:

yipz, s
p1q, ..., spNc´1qq “ fipx

p1qq `

Nc´1
ÿ

k“1

fipx
pk`1qq ´ fipx

pkqq

1` expp´ρpkqpz ´ spkqqq
, @i “ 1, ..., Nc ´ 1, (2)

where the equilibrium function is defined as:

fipx
pkqq “

αix
pkq
i

1`
řNc´1

j“1 pαj ´ 1qx
pkq
j

. (3)
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The continuous wave propagation theory is also applicable to staged columns [33]. We define

z “ 0 and z “ 1 to represent the column bottom and top, respectively, and consider a set Z

of discrete values of z to account for the staged realization of the column. The parameter αi is

the constant relative volatility of the component i with respect to the high-boiling component,

here oxygen. The asymptotic values x
pkq
i and x

pk`1q
i of different waves are mathematically coupled

through compatibility conditions, cf. [14]. The wave slope ρpkq is calculated as:

ρpkq “
B
řNc´1

j“1 pαj ´ 1qpx
pk`1q
j ´ x

pkq
j q

1`
řNc´1

j“1
1
2 pαj ´ 1qpx

pk`1q
j ` x

pkq
j q

. (4)

Herein, the model parameter B can be interpreted as dimensionless mass transfer coefficient [14].

Note that in the model as presented above, the asymptotic values x
pkq
i and wave slopes ρpkq generally

change with time as a reaction to varying amount and composition of the liquid and vapor feed

streams. The mean concentration x̄i of a chemical species in the column used for global mass and

energy balances is obtained from integral summation:

x̄i “

ż 1

0

xipz, s
p1q, ..., spNc´1qqdz . (5)

We formulate a global linear hydraulic correlation for the entire column section to account for

transient liquid holdup:

9nL,out “ k̄d ¨ ntotal , (6)

where k̄d is the global hydraulic coefficient and ntotal the total molar holdup of the column section.

In addition to Eqs. (1) to (6), we formulate global energy and mass balances for the column section.

Due to the fast temperature dynamics, the energy balance is written in quasi-stationary form. A

complete presentation of the model equations can be found in [15]. The TWPM is a low-order

model as it comprises Nc differential states only. These differential variables are the total molar

column hold-up ntotal as well as Nc´ 1 molar amounts of species ni. The latter states are directly

correlated with the wave positions spkq and mean concentrations x̄i.

3.2 Reduced Controller Model

The intermediate feed/withdrawal tray divides the distillation column into two sections. Conse-

quently, we formulate a reduced-order model by combining two TWPMs with mechanistic models

for the feed-withdrawal and bottom tray as illustrated in Fig. 2. Rigorous modeling of the feed tray
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Fig. 2: Illustration of the configuration of TWPMs and mechanistic feed and bottom stage models.

and bottom tray provides a flash calculation for the superheated feed stream (2) and two-phase

bottom feed stream (4), respectively. Hence, all streams entering the two TWPM blocks are in

saturated vapor or liquid state. We do not investigate the reduction of the heat exchanger, turbine

and compressor models herein.

As the equations in the TWPM are derived under the assumption of constant relative volatili-

ties, the approach is only valid for near-ideal mixtures. From FOM simulation of the process in

nominal operation, we observe relative volatilities within a narrow range, αN2
P r2.69, 2.71s and

αAr P r1.24, 1.26s, and conclude the applicability of TWPM to both sections. This nominal op-

erating point is defined as steady state corresponding to 9nAir “ 800 mol s´1, ξside “ 0.505 and

ξLIN “ 0.001123, which leads to 10 ppb impurity. The reduced process model comprises a set of 62

differential and 5 202 algebraic equations, where the three-component TWPMs and models for feed

and bottom tray involve three differential equations each. The remaining 50 differential equations

are due to the dynamic modeling of the heat exchangers. By contrast, the mechanistic process

model has 350 differential and 14 205 algebraic equations, including 300 differential equations of

the mechanistic stage-by-stage column model. This demonstrates the significant model reduction

capabilities of the wave propagation approach.

3.3 Parameter Estimation

For each TWPM, the dimensionless mass transfer coefficient B, relative volatilities αN2
and αAr,

and the global hydraulic coefficient k̄d have to be specified. For their estimation, we use as data

set the concentration profiles and tray holdups from an FOM simulation at the nominal steady
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state. Even though the model parameter values are identified from data of a single steady state

only, we expect the column model to be valid over a wide range of operating conditions. This

is a particular strength of the TWPM as discussed in the introductory section. However, due

to idealized modeling assumptions, plant-model mismatch may occur far from the nominal point.

One possible strategy to tackle such a behavior is the consideration of multiple steady-states for

parameter estimation. However, as we show in this work, the model identified for a single steady

state is sufficient for control purposes.

The global hydraulic coefficient k̄d is determined directly from the total liquid holdup nL,total and

the exiting liquid flow 9nL,out of the column section:

k̄d “
9nL,out
nL,total

. (7)

For the identification of the remaining parameter values, we individually fit the reduced models

of rectifying and stripping sections to the steady-state concentration profiles. The parameter B is

determined by means of least-squares optimization. Values for the parameters αN2 and αAr may

be obtained either from averaging the relative volatilities from the data set over all trays, or from

a least-squares fitting procedure [15]. Here, we allow the optimizer to determine constant relative

volatilities αN2 and αAr within the range of values observed in the FOM, i.e., αN2 P r2.69, 2.71s

and αAr P r1.24, 1.26s.

While the classical least-squares method provides reasonable parametric values for the stripping

section, the parameter values for the rectifying section obtained from this approach were found

to be unsatisfactory. Since the concentration profiles range over several orders of magnitude,

considerable deviation from the data points was found in the ultra-high purity part. To improve

the model quality in this range, we scale all errors by the impurity content from the data set, cf.

Eq. (8). Thereby, we obtain an improved fit over the full spectrum of concentrations. The scaled

objective function of the parameter estimation problem for the rectifying section thus becomes:

ΦLSQE “

Nt
ÿ

j“1

˜

xTWPM
j,N2

´ xData
j,N2

1´ xData
j,N2

¸2

`

˜

xTWPM
j,Ar ´ xData

j,Ar

1´ xData
j,N2

¸2

, (8)

where Nt is the number of stages of the column section. We further add the following constraint
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to the parameter estimation problem of the rectifying section:

xTWPM
Nt,N2

´ xData
Nt,N2

ď 0 , (9)

to prevent overestimation of product purity by the reduced column model in the nominal operating

point.

3.4 Parameter Estimation Results

We formulate the steady-state parameter estimation problems as dynamic optimization problems

with terminal cost and solve them offline with our open-source optimization package DyOS [34].

We specify relative integration and optimization tolerances of 10´8 and 10´6, respectively, and

a sufficiently long horizon of 1000 h to reach a steady state at the final time. The estimated

parameter values are listed in Table 1. The resulting stationary concentration profiles at the

nominal operating point are presented in Fig. 3.

Table 1: Model parameters for rectification (I) and stripping section (II) of the distillation column.
Number of stages Nt for comparison.

Nt B αN2
αAr k̄d

Section I 79 135.34 2.71 1.26 0.0079 s´1

Section II 20 19.61 2.71 1.26 0.0356 s´1

As known from the literature, the parametric values for coefficients B are in the order of magnitude

of the number of stages of the respective column section [14]. The estimated parameter values

lead to accurate prediction of the nitrogen concentrations in each column section, Figs. 3a, 3c

and 3e. The relative deviation of the nitrogen profiles from the data points is small with mean

µ and standard deviation σ in both sections below 0.9 % and 1.6 %, respectively. However, the

argon profiles in both column sections exhibit significant relative errors. Especially the argon

concentration bulge in the top section is strongly overestimated by a factor of roughly 2.5, Fig. 3b.

Manipulation of the relative volatilities outside the range of physical values from FOM simulation

did not improve this mismatch. Investigation of the internal vapor and liquid flows reveals a

variation by 14 % in the bulge region, i.e. violation of the modeling assumptions of the TWPM.

We expect a reduction of the observed mismatch through rigorous stage-by-state modeling of the

argon bulge region. This would, however, lead to a more complex model and thereby increase
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(a) (b)

(c) (d)

(e) (f)

Fig. 3: Concentration prediction by the reduced models at nominal steady state. Tray numbering
from bottom to top. Extrapolation indicated by dotted line. (a) + (b): Rectifying section. (c) +
(d): Top ten stages of rectifying section. (e) + (f): Stripping section.
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the computational cost of NMPC. Another alternative is using a more complex wave propagation

approach accounting for enthalpy effects, as presented in [35]. However, the enthalpy calculation

that would be required for each tray similarly results in a significant increase in model complexity.

Here, we accept the observed model inaccuracy when using a single TWPM per column section as

the effect on the nitrogen profiles, i.e. the target component, appears to be small and the model

to be sufficently accurate for control purposes. The imprecise reproduction of the argon data

points is generally expected to affect the composition of the withdrawn side stream and bottom

stream, thereby affecting the enthalpy calculations relevant for the heat exchangers. However, as

our control case study in Section 4 shows, the observed model mismatch does not have a noticable

effect on the control performance.

4 NMPC Case Study

The performance of NMPC embedding the reduced TWPM process model is investigated in a

closed-loop control case study in-silico.

4.1 NMPC Formulation

We investigate an NMPC scenario that aims at tracking a given product demand profile. The

NMPC repeatedly solves a dynamic optimization problem (DOP) on a sampling grid of interval

length ∆ts and implements the first control move to the process [36]. We formulate the DOP as

follows:

min
x,u

ż tf

t0

`pxpτq,upτq, τqdτ (10a)

s.t. M 9xptq “ fpxptq,uptqq, @t P T , (10b)

xpt0q “ x̂, (10c)

xptq P X , uptq P U , @t P T , (10d)

where x : T Ñ Rnx are the state variables, u : T Ñ Rnu are the manipulated variables, T “ rt0, tf s,

where t0 and tf are the initial and final time, respectively. Accordingly, Tp “ tf ´ t0 is the

prediction horizon. The objective function, Eq. (10a), is of Lagrange type with running cost

c©J. Schulze et int., A. Mitsos Confidential Page 12 of 24



NMPC-TWPM for ultra-high-purity ASU 14.12.2020

function ` : RnxˆRnuˆT Ñ R. The matrix M P Rnxˆnx is the coefficient matrix of the differential-

algebraic system of equations, Eq. (10b). Condition (10c) initializes the dynamic problem with the

current process state x̂, which is obtained from state estimation. The sets X and U , Eq. (10d),

specify the admissible states xptq and controls uptq, respectively.

To implement the tracking NMPC, the running cost ` in the DOP (10) is specified as quadratic

function penalizing the deviation from the production target:

`pxptq,uptq, tq :“ ω1 ¨ p 9nPGANptq ´ 9nPGAN,spptqq
2

`ω2 ¨ px
PGAN
N2

ptq ´ xPGAN
N2,sp q

2

`ω3 ¨ 9nLINptq
2 .

(11)

Herein, 9nPGAN
sp is the product demand. Tracking the product demand profile is the primary objec-

tive of the controller. However, since over-purification in a column is commonly associated with

economic loss and thus undesirable [37], a second cost term is added, which penalizes the devia-

tion of product quality from the constant setpoint xPGAN
N2,sp

. Note that satisfaction of the requested

product quality is independent of this second cost term and ensured by means of a hard quality

constraint in the DOP (10). Finally, we include a cost term for the liquid nitrogen stream (LIN)

to minimize over-production and extensive discharge for improved tracking. The coefficients ωi

represent tuning parameters of the controller specifying the trade-off between tracking performance

and economic criteria. The tuning of the NMPC is presented in Section 4.2.

We implement a piecewise-linear continuous control parameterization with bounds on the time

derivatives ∆ui of the MVs. We allow sufficiently large values of ∆ui to operate the process with

smooth but fast control action, cf. Section 4. The control grid is a structured grid with interval

length ∆tu “ ∆ts for t P rt0, t0 ` Tus, and a single control interval on the remaining prediction

horizon. We apply a shift initialization strategy for the MVs. All path constraints are evaluated

on the sampling grid, which is assumed to be sufficiently fine for the process investigated.

We employ an extended Kalman filter (EKF) for state estimation [38], i.e., to determine online the

current holdups and concentrations of the two column sections and the feed and bottom tray of the

reduced model. We assume that the flow rates and compositions of the product stream (PGAN),
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9nPGAN and yPGAN
i , of the waste stream, 9nWaste and yWaste

i , and of the withdrawn stream (3), 9n3

and x
p3q
i , as well as the reflux flow rate 9n8 are measured. Additionally, we assume that the wall

temperatures in the heat exchangers are measured, which enables direct state feedback for these

units. This assumption enables a direct evaluation of the combined framework of model reduction

and state estimation for the distillation column decoupled from the effects of state estimation for

the heat exchangers.

All computations are run on a desktop computer with Intel R© CoreTM i5-8500 at 3.0 GHz and

16 GB RAM. The dynamic optimizations and simulations are performed with our open-source

dynamic optimization framework DyOS [34], where we combine the integrator sLimex [39] and the

NLP solver SNOPT [40]. Optimization and feasibility tolerances are set to 10´3, the integration

tolerance is set to 10´5. The NMPC algorithm is implemented in Python, where DyOS is called

through its Python interface. We employ the EKF from the FilterPy package [41]. The plant

and controller models are implemented in the modeling language Modelica [42] and translated and

accessed through the Functional Mock-up Interface [43] using Dymola [44]. We scale all model

inputs and outputs to improve numerical properties in optimization.

4.2 Description of the Case Study

The study is performed in-silico, i.e., the real plant is represented by the mechanistic FOM. We

consider a series of step changes in the gaseous nitrogen product demand 9nPGAN,sp as illustrated by

Fig. 4. The production target changes are not known in advance. To assess the performance of the

Fig. 4: Product demand profile investigated in the case study.

NMPC embedding the reduced model (NMPC-TWPM), we compare its closed-loop behavior to an
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NMPC using the mechanistic model and full state feedback for control (NMPC-FOM). Both NMPC

implementations solve the DOP (10) to convergence. Even though generally relevant for controller

performance, the effect of delayed feedback is neglected in the closed-loop simulations. However,

we discuss the computational cost associated with the different embedded models to evaluate the

real-time capability of the strategies. We initialize the controlled system in steady-state operation

with 9nAir “ 800 mol s´1, ξside “ 0.505 and ξLIN “ 0.001125 at 9 ppb impurity.

Table 2: NMPC tuning parameters.

Parameter Value

∆ts 2.5 min
Tu 20 min
Tp 1 h
ω1 1 sec2 mol´2

ω2 1 ppb´2

ω3 1 sec2 mol´2

Table 2 collects the NMPC settings. Suitable controller sampling time and control grid were

determined heuristically, taking into account the fast as well as slow modes of the open-loop

process response. The tuning applied herein is in line with the literature on NMPC of ASUs, cf.,

e.g., [4]. We find the controller to be stabilizing in all load change scenarios considered in this

work. As tracking of the PGAN demand is the primary objective of the controller, the weight

ω2 for the purity is tuned comparably soft to allow temporary over-purification in load change

situations. The chosen value for ω3 was found to be sufficiently large to avoid extensive utilization

of the LIN stream. We further set the quality target to xPGAN
N2,sp

“ 1 ´ p10 ppbq for all times to

operate the process at the upper quality limit. Tuning of the EKF was performed heuristically.

The constraints of the DOP are summarized in Table 3. In addition to the quality requirement,

we impose path constraints on the column section holdups. Moreover, we define the power ratio ζ

to characterize the coupling of turbine and compressor:

ζptq :“
Pcompptq

Pturbptq
, (12)

and constrain its values to the physically meaningful range.

4.3 Results and Discussion

In this section, we compare the results of the NMPC implementations using the reduced and full-

order controller model with regard to computational time, constraint satisfaction and tracking
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Table 3: Input and state path constraints, represented by the sets U and X . 9nAir feed air stream,
ξside split factor side withdrawal, ξLIN split factor liquid product discharge, 1´ xPGAN

N2
impurity, ζ

power ratio of coupled compressor and turbine, ntotal,1 liquid holdup of rectifying section, ntotal,2
liquid holdup of stripping section.

Variable Lower bound Upper bound Type

∆ 9nAir ´ 0.2 mol sec´2 0.2 mol sec´2 Input
∆ξside ´ 5 ¨ 10´4 s´1 5 ¨ 10´4 s´1 Input
∆ξLIN ´ 10´4 s´1 10´4 s´1 Input

9nAir 600 mol sec´1 900 mol sec´1 Path
ξside 0.48 0.52 Path
ξLIN 0 0.005 Path

1´ xPGAN
N2

0 ppb 10 ppb Path
ntotal,1 60 kmol 90 kmol Path
ntotal,2 6 kmol 9.5 kmol Path
ζ 0 1 Path

error. Fig. 5 depicts the closed-loop trajectories of the controlled system. Fig. 5a shows the

tracking performance of the controllers. Both NMPC strategies successfully accomplish tracking

of the product demand with no steady-state offset. The negative steps in the production rate at

t “ 2.5 h and t “ 7.5 h are tracked almost instantaneously with insignificant lag. On the other

hand, the process is not able to instantaneously respond to the positive 20 % target change at

t “ 5 h. In order to satisfy the purity goal, higher production rates necessitate an increased liquid

process holdup, Figs. 5c and 5d, which is provided by internal liquefication in the energy integrated

process. The ramp profile of approx. 1.5 h duration can be attributed to the hard purity constraint

being active, Fig. 5b, and the active input constraint for ξside, Fig. 5e, while increasing the liquid

holdup. A similar behavior was found, e.g., in [45].

We observe in Fig. 5b that a bounded violation in product purity of less than 10 ppb occurs for the

NMPC-TWPM case. Modification of the EKF tuning did not eliminate of this offset. Considering

the wide range of concentrations in the process and the discussion in Section 3, this mismatch

is generally acceptable, but may still be critical for operation of the ultra-high-purity process.

However, the bounded drift appears on a relatively long time scale and is of small magnitude.

Hence, we can introduce simple corrective measures to eliminate this offset. Possible strategies

are an adjusted parameter fitting, e.g., by consideration of multiple steady states as discussed in

Section 3.3, the definition of a conservative backoff in the NMPC cost function and constraints or

the application of an offset-free NMPC method [46]. Here, we implement a systematic approach

to eliminate the offset by means of adding an output bias term on the NMPC purity setpoint and
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 5: Closed-loop results of control case study. (a): Molar production rate of ultra-pure gaseous
nitrogen, (b): Purity of the nitrogen (PGAN) product, (c) + (d): Liquid holdups of the rectifi-
cation and stripping section, respectively (path constraints). (e) + (f) + (g): Closed-loop control
trajectories of the case study (MVs).
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consistently tighten the upper purity constraint, similar to the output disturbance model proposed

by Pannocchia and Rawlings [47]. We choose this strategy as it neither increases model complexity

nor requires an advanced parameter estimation strategy. This bias is defined as the difference in

measured purity and model prediction and is updated at every controller sampling instant. Figs. 5a

and 5b show the closed-loop tracking trajectories of the NMPC-TWPM+Bias configuration. In

practice, the occasional minor overshoot in purity, which also causes a temporary fluctuation in

9nPGAN, could be addressed by means of an additional small backoff. However, we do not implement

such a backoff to retain comparability of the results.

Except from the purity offset, all controllers are able to satisfy the constraints in open-loop predic-

tions and closed-loop operation at all times. Figs. 5c and 5d illustrate the trajectories of the liquid

holdups. The TWPM accurately predicts the holdups and exiting streams of the column sections.

In all cases, a drift in the holdups is not present, i.e., the inventories are successfully regulated by

NMPC-TWPM.

The control profiles are shown in Figs. 5e to 5g. The piecewise-linear continuous parameterization

provides smooth control trajectories. Both controller models, TWPM and FOM, lead to similar

control profiles in all operating situations. The control action generated by the NMPC-TWPM

+ Bias is slightly more aggressive due to corrective action necessary for respecting the purity

constraint. As a result of the additional cost term on the discharged liquid nitrogen stream 9nLIN,

the input constraint on the split factor ξLIN is not reached at any point and is operated close to

zero most of the time.

Table 4: CPU times for online dynamic optimization. Mean reduction is calculated based on
averaged CPU times.

∅ CPU time Max. CPU time ∅ Reduction

NMPC-FOM 57.9 sec 2728 sec ´

NMPC-TWPM 9.0 sec 139 sec 84 %
NMPC-TWPM + Bias 10.7 sec 144 sec 82 %

Table 4 shows the computational costs of the NMPC setups. Employing the reduced controller

model results in an average CPU time reduction of 84 % for NMPC-TWPM, and 82 % for NMPC-

TWPM + Bias. Moreover, the average and maximum CPU times of the NMPC-TWPM lie within

a range of few seconds and minutes, respectively. For all controllers, the maximum CPU times
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were observed at time instants where the load change is realized. Here, recomputation of the

optimal solution at the controller sampling points is associated with high computational cost.

On the other hand, CPU times during near-stationary operation are significantly smaller as the

shift initialization strategy already provides a near-optimal initial guess, leading to a disparity in

maximum and average CPU times in all cases. For the ∆ts “ 150 sec controller sampling grid, all

control updates are provided within one sampling interval. By contrast, NMPC-FOM exceeds a

multiple of the sampling interval length in the worst case. This computational delay is prohibitive

for real-time applicability. The mean computation time of NMPC-FOM lies within one sampling

interval, however, even in this case introducing a delay that can generally be expected to degrade

the control performance.

The worst-case CPU times of NMPC-TWPM are regarded as uncritical for the undisturbed process

investigated. In general, however, control performance for processes with significant unpredicted

disturbances would suffer from such computational delays. NMPC of such processes may thus

require the combination of model reduction approaches and suboptimal fast-update methods [48],

which only perform a limited number of iterations in the optimization. Further, when using

sensitivity-based fast-update methods for control of complex flowsheets, model reduction by means

of TWPM opens a way to cheap second-order sensitivity computations.

5 Conclusions and Outlook

Achieving real-time capable NMPC for large-scale chemical processes is challenging, mainly due

to complex nonlinear process models. In the present study, we demonstrate that our recently

introduced transient wave propagation approach is suitable for reduced modeling of multi-section

multi-component ultra-high-purity distillation columns embedded in entire flowsheets. To this end,

we derive a low-order controller model of a highly energy-integrated ultra-high-purity air separation

process by combining TWPMs for each distillation column section.

The performance of the reduced-model NMPC is investigated in an in-silico tracking control case

study. Employing the TWPM for prediction in an NMPC architecture facilitates control of produc-

tion targets and process inventories in load change scenarios in the presence of strict requirements
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on product quality. Comparison of the controller with an NMPC embedding a full-order mech-

anistic model demonstrates an average CPU time reduction of 84 % and maximum CPU times

within the controller sampling rate at similar closed-loop performance. A minor offset in the

form of a slow and bounded drift in the predicted purity is observed as a result of plant-model

mismatch. However, this offset is removed by adding an output bias on the purity setpoint and

constraints, thereby enabling tight operation at the 10 ppb impurity limit. We hence conclude that

the TWPM achieves strong model reduction capabilities and high accuracy that enable real-time

capable NMPC in applications of industrial relevance. As the average and maximum computation

times in our study lie in the range of few seconds and minutes, the extension to even more com-

plex process topologies appears promising. Finally, coupling of model reduction and fast-update

NMPC methods opens a way to further decrease in the worst-case computational delay of the

control updates in cases where delayed feedback is critical.
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